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shown in Figure 7. The figure shows a single bias valence band 
(surface-to-tip) image where the four different selenium sites are 
easier to distinguish owing to the higher quality of the images 
obtained at a single bias.11 The subsurface Re atom positions 
can be inferred by comparison with Figures 3 and 5b. These 
positions correspond to regions of intermediate tunneling current 
between the brightest areas, associated with the selenium atoms, 
and the darkest areas, associated with the "holes" in the Re atom 
layer between the metal clusters. In the valence band images (e.g., 
Figure 7), the Se(3) and Se(4) atom positions are brighter than 
the Se(2) and Se(I) positions although they are farther away from 
the tip by 0.34 A. Consequently, atoms closer to the tip do not 
necessarily dominate tunneling images. 

In conclusion we would like to emphasize the need for an 
interplay between theory and experiment in the analysis of atomic 
resolution STM and AFM images. Layered transition metal 
dichalcogenide surfaces are relatively simple since they have no 
dangling bonds or surface reconstructions. Nevertheless, we found 
it challenging to deconvolute the topological and electronic con-

(11) The single bias images are taken at higher resolution (400 x 400 
pixels) and can be scanned more quickly. 

1. Introduction 
The theory of reaction rates has evolved from two quite different 

points of view, which may be called the phenomenological and 
the model based approaches. In the former, correlations of rate 
constants with the corresponding equilibrium constants are 
identified, and primary and secondary kinetic isotope effects and 

(1) This work is supported, in part, by the U. S. National Science Foun­
dation, through Grant Nos. CHE 89-00103 and CHE 89-922048, and, in part, 
by a grant for computing time by the Minnesota Supercomputer Institute. 

tributions to the STM and AFM images of the surface of ReSe2. 

Experimental Section 
The STM and AFM used in this study was a Nanoscope II from 

Digital Instruments, Santa Barbara, CA, which aquires images of 400 
X 400 pixels. Electrochemically etched tungsten or platinum tips were 
used for STM, the preparation of which is described in ref Ig. Micro-
machined polycrystalline silicon cantilevers, as supplied by the AFM 
manufacturer, were used for the AFM measurements. Crystals of un­
intentionally doped ReSe2 were prepared by a chemical vapor transport 
procedure similar to that described in ref 8 and had n-type conductivity. 
The thin plate-like crystals were mounted with Ag epoxy onto Cu disks 
and were cleaved with sticky tape prior to each STM or AFM experi­
ment. Details of the STM and AFM conditions are given in the figure 
captions. 
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sometimes the activation parameters are determined. Then the 
formalism and concepts of transition-state theory2 are used to 
attribute various qualitative features to the transition states. 
However, while trends can be predicted, little quantitative in­
formation about activated structures has been available from this 
approach. As a result, it is often hard to be sure that the mag­
nitude of a suggested effect is consistent with the suggested ex-

(2) Kreevoy, M. M.; Truhlar, D. G. In Rates and Mechanisms of Reac­
tions; Bernasconi, C. F., Ed.; Wiley: New York, 1986; Chapter 1. 
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calculated KIE values and their variation with Ky, and it has a perceptible effect on the Marcus parameters. Because so many 
characteristics of the experimental ky values are reproduced, we conclude that the potential functions are a reasonable representation 
of the real potential energy functions governing the hydrogenic motions, at least in the neighborhood of reactants and critical 
configurations. 
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planation. It is also hard to be confident that the various suggested 
characteristics of a transition state are mutually consistent. In 
one version of the modeling approach, potential energy surfaces 
have been fitted to semiempirical or ab initio quantum mechanical 
electronic structure calculations, and transition-state theory has 
been used to calculate reaction rates. However, the generation 
of potential energy surfaces is so time consuming that only the 
simplest systems can be studied in this way.3 Even the prediction 
of barrier heights is still beyond the state of the art for most 
reactions. The generation of more complete potential energy 
surfaces, required by variational transition-state theory, is much 
more difficult still. It has been very difficult to use the modeling 
approach to mimic the wealth of results which have been produced 
for inherently complicated reactions, occurring in solution. 

In the present paper the first approach is pursued in conjunction 
with the second approach, and in this way some of the faults and 
difficulties of both approaches are alleviated. A family of global 
potential energy surfaces which permits us to mimic a large and 
diverse body of experimental results for hydride transfer between 
nicotinamide adenine dinucleotide (NAD+) analogues is described. 
Our potential energy surfaces are analytic functions of three 
internal coordinates, corresponding to three-body models (A,-H-
Aj)+ of the reactive systems, where A1

+ and A / are NAD+ 

analogues. A1
+ and A,+ are represented in the potential functions 

by two "extended atoms", called C) and C2, which have masses 
of 15 daltons. The potential functions are intended to mimic the 
effects of additional degrees of freedom of the solute and also 
reactant-solvent interactions. We believe that they provide the 
best available description of events near the critical configurations. 

In an earlier paper4 a family of empirically modified extended 
LEPS5 potentials were used to show that the hydrogen transfers 
considered here are dominated by tunneling. The critical con­
figurations6,7 were found to be far from the conventional transition 
states (the saddle points on the potential energy surfaces2). In 
particular, they were found to have considerably larger C1-C2 

separations than the transition states.4 Although the Born-Op-
penheimer approximation8 was assumed to be satisfied so that the 
potential energy functions and saddle points were exactly the same 
for hydrogen and deuterium variants of the system, the most 
probable C ,-C2 separations were greater for hydride tunneling 
than for deuteride tunneling. 

This led to the prediction of a number of experimental results, 
all of which have now been reported4,9 either for hydride transfer 
or proton transfer, or both. However, the potential energy surfaces, 
which were intended to model hydride transfer between NAD+ 

analogues in solution, failed to reproduce several aspects of the 
experimental results. While rate constants calculated from these 
potential energy surfaces could be fitted to the Marcus theory of 
atom transfer,2,10 as can experimental hydride transfer rate con­
stants," the work term, W, required to fit the calculated rate 
constants was much larger than that required by the experimental 
values, which is around zero.11,12 Further the calculated primary 
kinetic isotope effect (KIE) was around 20 when the equilibrium 
constant, Ky, was l.O.4 The calculated KIE values also showed 
a sharp maximum at that Ky when the acceptor C-H bond 

(3) Truhlar, D. G.; Steckler, R.; Gordon, M. S. Chem. Rev. 1987,87, 217. 
(4) Kreevoy, M. M.; Ostovic, D.; Truhlar, D. G.; Garrett, B. C. J. Phys. 

Chem. 1987, 90, 3766. 
(5) Kuntz, P. J.; Nemeth, E. M.; Polanyi, J. C; Rosner, S. D.; Young, C. 

E. J. Chem. Phys. 1966, 44, 1168. 
(6) "There is ... always some intermediate configuration which is critical 

for the process, in the sense that if this system is attained, there is a high 
probability that the reaction will continue to completion." Glasstone, S.; 
Laidler, K. J.; Eyring, H. The Theory of Rate Processes; McGraw Hill: New 
York, 1941; p 10. 

(7) The critical configuration has been defined as the most probable 
structure for crossing the hardest-to-attain dividing surface that separates 
reactants from products.4 

(8) Born, M.; Oppenheimer, J. R. Ann. Phys. 1927, 84, 457. 
(9) Kreevoy, M. M.; Lee, I.-S. H. Z. Naturforsch. 1989, 44a, 418. 
(10) Marcus, R. A. J. Phys. Chem. 1968, 72, 891. 
(11) Kreevoy, M. M.; Ostovic, D.; Lee, I.-S. H.; Binder, D. A.; King, G. 

J. Am. Chem. Soc. 1988, 110, 524. 
(12) Lee, I.-S. H.; Ostovic, D.; Kreevoy, M. M. J. Am. Chem. Soc. 1988, 

110, 3989. 

strength was varied to produce a range of Ky values.4 The ex­
perimental KIE, on the other hand, has not been observed to 
exceed 6.4,9,13 Further the experimental KIE increases with Ky 
for substituents in the hydride donor9 but decreases as K11 increases 
for substituents in the hydride acceptor.4 The experimental results 
were easily accommodated within phenomenological Marcus 
theory, but they were not mimicked by the results calculated from 
the model potentials.4 

Both in the earlier work4 and the present work, improved 
canonical variational transition-state theory14 with large curvature 
ground-state tunneling was used to calculate rate constants. These 
rate constants were fitted to Marcus theory just as if they were 
experimental rate constants. The resulting Marcus parameters 
and isotope effects were compared with the experimental values, 
and the parameters of the potential function were adjusted to 
improve the match. In the present work the potential energy 
surfaces were readjusted, and the calculation of Marcus param­
eters and KIEs was repeated until an optimal match was achieved 
between the parameters based on calculation and those based on 
experiments. In this way we have obtained a family of three-body 
potential energy surfaces which successfully approximate the 
behavior of all Marcus theory parameters (W, X, r), the values 
of the KIE, trends in KIE with Ky, as well as the bond dissociation 
energies and vibration frequencies. 

The starting point for the new potential energy surfaces, as 
before, is a family of extended LEPS potential.5 We then add 
terms representing the interactions of charges in a dielectric 
medium15 and an adjustable barrier widening function,4,16 which 
is used to bring the calculated isotope effects into reasonable 
agreement with experimental results. 

2. Marcus Theory 
Marcus theory was originally derived for outer-sphere electron 

transfer.17 It was extended by analogy to atom and group 
transfer.2,1011,18"21 It has not been derived from any molecular 
model of atom or group transfer, nor is there any clearly implied 
model. However, two considerations make the Marcus formalism 
a very useful and easily applied framework for relating rate 
constants, k„ to equilibrium constants, K^,. First, it equates In 
k, to the first few terms of a power series in in K^.2 (The number 
of terms retained in the series depends on the variant of the theory 
used.2) If only the first-order term is retained, it becomes the 
Bronsted catalysis law.22 This "law" is already sufficient for 
representing a large amount of data. A formalism that adds higher 
order terms to it should be even more broadly applicable, and, 
indeed, many types of theoretical23 and experimental2,20,24 rate 
constants have been successfully fitted to the Marcus formalism. 
Second, it suggests an interpretation for the coefficients.2,11,18 In 
the present work we investigate whether the Marcus formalism 

(13) Ostovic, D.; Roberts, R. M. G.; Kreevoy, M. M. J. Am. Chem. Soc. 
1983, 105, 7629. 

(14) (a) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory of 
Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 
1985; Vol. 4, p 65. (b) Garrett, B. C; Truhlar, D. G.; Wagner, A. F.; 
Dunning, T. W. J. Chem. Phys. 1983, 78, 4400. (c) Garrett, B. C; Abusalbi, 
N.; Kouri, D. J.; Truhlar, D. G. J. Chem. Phys. 1985,83, 2252. (d) Garrett, 
B. C; Joseph, T.; Truong, T. N.; Truhlar, D. G. Chem. Phys. 1989,136, 271. 
(e) Truhlar, D. G.; Garrett, B. C. J. Chim. Phys. 1987, 84, 365. 

(15) (a) Hoijting, G. J.; de Boer, E.; van der Meij, P. H.; Weijland, W. 
P. Reel. Trav. Chim. Pays-Bas, 1956, 75, 487. (b) Chalvet, O.; Jano, I. C. 
R. Seances Acad. Sci. 1965, 261, 103. (c) Kozaki, T.; Morihashi, K.; Kikuchi, 
O. J. Am. Chem. Soc. 1989, / / / , 1547. (d) Tucker, S. C; Truhlar, D. G. 
Chem. Phys. Lett. 1989, 57, 164. 

(16) Truhlar, D. G.; Horowitz, C. J. J. Chem. Phys. 1978, 68, 2466. 
(17) Marcus, R. A. J. Chem. Phys. 1956, 24, 966. 
(18) Kreevoy, M. M.; Lee, I.-S. H. J. Am. Chem. Soc. 1984, 106, 2550. 
(19) Roberts, R. M. G.; Ostovie, D.; Kreevoy, M. M. Faraday Discuss. 

Chem. Soc. 1982, 74, 257. 
(20) Albery, W. J.; Kreevoy, M. M. Adv. Phys. Org. Chem. 1978,16, 87. 
(21) Lewis, E. S.; Hu, D. D. J. Am. Chem. Soc. 1984, 106, 3292. 
(22) (a) Bransted, J. N.; Pederson, J. J. Z. Phys. Chem. 1924, 108, 185. 

(b) Bronsted, J. N. Chem. Rev. 1928, 5, 322. 
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can be used to correlate kr values calculated from three-body 
models for the reacting systems, we use such calculations to inquire 
into the physical significance of the Marcus theory parameters, 
and we identify the particular parameters of the potential energy 
surfaces that have the most influence on each of the Marcus 
parameters. 

In the Marcus theory of atom or group transfer, the reactive 
event is visualized in three stages: first, reactant conversion to 
precursor configuration, a process that has a standard Gibbs free 
energy of W\ second, precursor configuration conversion through 
the transition state (or other critical configuration6'7) to a successor 
configuration, a process that has a standard Gibbs free energy 
of AC0' and a standard Gibbs free energy of activation of AG*; 
and, finally, the conversion of the successor configuration to 
products, a process that has a standard Gibbs free energy of -W. 
In reactions of the type under consideration here, W is thought 
to arise from the negative entropy of bringing the reactants to­
gether and properly aligning them, from a positive desolvation 
enthalpy, and from the negative enthalpy of charge transfer in­
teraction between the reactants." It is thought to be approxi­
mately independent of the structural details of the reactants and 
to be near zero. 

We apply the Marcus formalism to the reaction shown in eq 
1. 

A1
+ + AyH — A1H + A / (1) 

The equilibrium constant is given in eq 2 and the transition-state 
theory rate constant is given in eq 3. 

K1J = exp(-AG°/RT) (2) 

k,j = (kBT/h) exp(-AG*/RT) (3) 

The free energy of activation for the second step, AG*, is given 
in terms of the free energy change of this step and an intrinsic 
barrier, A/4, for this step by eq 4. 

AG* = X/4 + AG°72 + AG0,2/4X (4) 

Equation 5 relates the standard Gibbs free energy of the overall 
reaction, AG0, to that for the second step, AG0'.2 

AG0' = AG0 - W + W (5) 

If A,"1" and Ay+ are structurally similar, W and W* are assumed 
to be equal, and, in that case, which applies in this paper, AG0' 
is equal to AG°. Equation 6 gives the overall reaction standard 
Gibbs free energy of activation, AG*, as a sum of AG* and W. 

AG* = AG* + W (6) 

AG* is strongly structure-sensitive, and W is not. Equation 7 
relates X to the corresponding parameters for two symmetrical 
reactions of the same type as that shown in eq 1 ? 

X = (X« + V / 2 (7) 

We note that eq 4, which is the heart of Marcus theory, requires 
a quadratic relation between a set of activation energies, AG*, 
and the standard free energies, AG0', for the same set of reaction 
steps. 

In the Marcus theory, the energy required to distort the nuclei 
of the precursor configuration into the geometry of the successor 
configuration, without the accompanying covalency change, is X.2 

It is called the reorganization energy. For a symmetrical variant 
of the reaction (Ky = 1), attainment of the transition state requires 
half the distortion required to attain the successor configuration. 
It therefore requires one-fourth of the energy, X/4, since the 
harmonic approximation is made.2 This quantity, X/4, is known 
as the intrinsic barrier. For the symmetrical reactions related to 
the reactants and products of eq 1, the intrinsic barriers are called 
X,-,-/4 and X,y/4, respectively. 

For a series of structurally similar symmetrical hydride transfer 
reactions, X1, should be a function of the tightness parameter, r,20 

and the standard free energy for the transfer of hydride from a 
standard donor,25 A// / , to A,-+.18'21 The standard free energy of 

transfer is AGy00. To infer the nature of the function and to 
suggest a formal definition of T, a number of idealized cases have 
been considered.18 In the first set of idealized cases it is postulated 
that the critical configurations for symmetrical hydride transfer 
are triple ions, A,+H~A,+. In that case all A1-H bond energy is 
lost in forming the critical configuration, and if AG,y00 becomes 
more negative, AG,,* becomes more positive by an equal amount. 
Since W is constant, X,,/4 increases by the same amount as AG17*. 
Recalling eq 2 and 3, [6(ln fc,-,)/5(ln AT^0)]^ is minus one. In 
the second set of idealized cases it is postulated that the two A1-H 
bonds in the symmetrical critical configurations have combined 
energy equal to the A1-H bond energy in the reactants. In that 
case AG,-,*, X,-,-/4, and kH are all independent of AGy

00 and [5(ln 
ku)/5(\n Kjj")] H*; is zero. In the third set of idealized cases, each 
of the two A,--H bonds in the critical configurations have the same 
bond energies that they have in the reactants. That is, the total 
A-H bond energy in each critical configuration is twice the A,-H 
bond energy in the reactants from which it was formed. In that 
case, if AG,,00 becomes more negative, AG,-,* and X,-,-/4 also be­
comes more negative, by an equal amount, and [6(ln &,-,)/5(ln 
Ky")] H*: is one. These idealized cases led to the definition of T 
by eq 8, which gives the three values the thought experiments 
require and is consistent with an earlier, qualitative definition.20 

T - I = [«(ln*„)/«(In*y»)]»\i (8) 

They also led to the idea that r could be identified with the sum 
of the bond orders to the in-flight hydrogen.4'18 That idea will 
be shown in this paper to be quantitatively inaccurate, although 
trends in r values do parallel trends in the sum of bond orders 
to the in-flight atom. For this reason r is called the tightness 
parameter. 

The other partner in the general reaction, A7
+ (eq 1) can be 

treated in the same way. When these two results are combined, 
using eq 7, eq 9 is obtained. 

[dX/d(AG0)]H, = 2( r - l ) (9) 

Instead of experimentally determining X1-, and Xy7 for each un-
symmetrical reaction, a linearized version of Marcus theory has 
been used,2,11,18 in which the T value was assumed to be constant. 
This yields 

X = X0 + [SX/6(AG°)VAG° (10) 

where X0 is X for the special case where both A^0 (the equilibriium 
constant for the standard reaction discussed above) are unity. 
Equations 4, 6, and 10 have been successfully applied to a large 
body of experimental rate constants for hydride transfer between 
NAD+ analogues." 

In summary, the four parameters of linearized Marcus theory 
are X, T, W, and W*. Since A,+ and Ay+ are structurally similar 
in the present study, we assume W = W so there are only three 
independent parameters. We now proceed to develop a family 
of potential energy surfaces from which ktj values can be calculated 
which will be in accord with the experimental values for the three 
parameters and with the experimental results for the isotopic 
variation of these parameters. 

3. The Potential Function 
The assumed potential energy surface for the collinear, 

three-body model of the reaction shown in eq 1 is given in eq 11. 

V = I W s + Vw + VCD + K801, (11) 

ÊLEPS ls a n extended LEPS function5 and Kw is a widening 
function.16 Taken together, VCD and Fwlv are intended to mimic, 
in a rudimentary way, the interaction of charges with each other, 
with another polarizable reactant, and with the solvent. Since 
the surfaces are adjusted to fit rate constants obtained in solution 
and include free energy of solvation, they represent potentials of 
mean force. The extended LEPS potential function is given in 
eq 12-16. 

(2S) For practical and historic reasons 10-methylacridan has been used as 
AyH, and the required equilibrium constants have been measured."•" 
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, _ 6ab Q\x Q* 
^ELEPS - . . .— + - . . •" 1 + *ab \ + k* 1 + fc„ 

[ 2 ( V l + ^ a b l + * „ c / 

\ 1 + *bc 1 + ^ a c / V 1 + * » b 1 + ^ c / j J ( } 

£ ' b =Z)e(ab)[e-2W'"-'«(ab)l-2e-^r">-'«(ab»l] (13) 

Ei0 = [/2Dc(ab)[e-2^r'>rr'(^ + 2e"""> "̂''°<ab>l] (14) 

^ib - (G.b + A b ) / 0 + *.b) (15) 

£ 2 b - ( & b - / . b ) / U - * . b ) (16) 

gab is a Coulomb integral, / a b is an exchange integral, £ab is the 
potential energy for singlet bonded a and b, £ a b is the repulsive 
potential for triplet antibonding a and b, and /3ab's are Morse range 
parameters. The &ab's are Sato parameters and were given the 
values 0.55 for C-H interactions and 0.20 for C-C interactions. 
Equilibrium dissociation energies are Z)e(ab)'s, and ^(abj's are 
equilibrium bond lengths. 

As a reference reactant, we have used a reactant with a C-H 
dissociation energy, ZV(CH), of 73 kcal mol"1, an equilibrium 
C-H distance, r,°(CH), of 1.118 A, and a range parameter, fioCll, 
of 2.175 A"1. These dissociation energies26" and bond lengths26b 

are approximately those for a doubly allylic hydrogen, and the 
dissociation energies are similar to those that have been measured 
or deduced for analogous structures.27 Using standard formulas,28 

these reference values generate a harmonic C-H stretching fre­
quency of 2937 cm"1. Other reactants were generated by changing 
Z)5(CH) in the range 58-83 kcal mol"1. The bond energy bond 
order method (BEBO),29 eq 17, was then used to maintain con­
sistent values of re(CH). 

re(CH) = ce°(CH) - 0.5A log 
/ 0.(CH) \ 

(17) 

The coefficient of the logarithmic term in eq 17 was given the 
value 0.5 A, somewhat smaller than the value commonly used for 
C-C bonds.29 This value was deduced by Johnston30 from the 
activation energy of the reaction of CH3 with H2. Presumably 
it is smaller than the corresponding value for C-C bonds because 
of the relative insensitivity of C-H bond length268 to change in 
bond energy.2615 A constant harmonic C-H stretching force 
constant was maintained as the bond dissociation energy was 
changed by applying eq 18 to the /3 values. 

0 = p0^/De° (CH) /0 . (CH) (18) 

The singlet and triplet energies, E1 and E3, of the reactant and 
product C-H bonds are obtained, in eq 13 and 14, from quantities 
which were adjusted to reproduce the geometric and spectroscopic 
properties of the reactants. If the two carbon atoms of the real 
reactants were brought into bonding distance, their interaction 
would be similar to the interplanar C-C interaction in graphite, 
because of the structures in which they are incorporated in the 
NAD+ analogues under consideration here. We have, therefore, 
based the initial choices of /3, re and r for the C-C "bond" on the 
interplanar properties of graphite,31 and final adjustments were 

(26) (a) Gordon, A. J.; Ford, R. A. In 7"Ae Chemist's Companion: A 
Handbook of Practical Data, Techniques, and References; John Wiley: New 
York, 1972; p 107. (b) Reference 26a, p 113. 

(27) Stein, S. E.; Brown, R. L. / . Am. Chem. Soc. 1991, 113, 787. 
(28) Herzberg, G. In Molecular Spectra and Molecular Structure. I. 

Spectra of Diatomic Molecules; D. Van Nostrand: New York, 1950; pp 
101-102. 

(29) (a) Pauling, L. J. Am. Chem. Soc. 1947, 69, 542. (b) Johnston, H. 
S.; Parr, C. J. Am. Chem. Soc. 1963, 85, 2544. 

(30) Johnston, H. S. Adv. Chem. Phys. 1960, 3, 131. 

made to reproduce the experimental Marcus parameters. This 
yields Z)6(CC) = 8.07 kcal mol"1, re(CC) = 3.228 A, and 0CC = 
1.890 A"1. The g's and Ts were adjusted by solving eq 15 and 
16. The C-H Sato parameters had to be made relatively large 
to avoid large, positive values of W. Although it is not obvious 
from the above equations, the Sato parameters scale the pairwise 
antibonding atomic interactions. If the C-H repulsion is allowed 
to be large, it makes a major contribution to AG*, and, since the 
magnitude of this contribution is not related to AG0', a large, 
positive value of W is obtained. Such values of W have been 
observed in proton transfers,32 but the reaction we are modeling 
here requires a W near zero." To get a near-zero value for W, 
kCH was given a value of 0.55. The other Sato parameter, kcc, 
also plays a major role in determining AG*. It was given a value 
of 0.20 to bring the calculated AG* into approximate agreement 
with the experimental results." 

The LEPS surface is known to give a too narrow barrier for 
the well-studied H-I-H2 reaction.33 When an unmodified LEPS 
surface was used, the calculated kinetic isotope effect was too large, 
so it was first modified by adding terms of the form16 shown in 
eq 19 to widen the barrier. 

K = a[(rClil - rC2H)(rC|H - r c c ) X 

('C2H - t c ) ] " exp[-a(rClH + /C2H + rc c)3] (19) 

The three internuclear distances were labeled rC|H, rClii, and r c c . 
But we could not reproduce the experimental Marcus parameters 
with this widening function.4 This function has a value of zero 
when the two bond lengths are equal, and in the reactant and 
product structures. But for the unsymmetrical reactions, the two 
bond lengths are not equal at the saddle point. We believe that 
the use of the Ka function in our previous work4 contributed to 
the calculated free energy of activation in a way that made the 
calculated W much too large. To solve this problem in the present 
study, we have now introduced the widening function shown in 
eq 20, which goes to zero at the saddle point and is close to zero 
everywhere on the transition state dividing surface between 
reactants and products. 

_ . (r*C|H^c;H ~ ^*C2H^C,H)\ 
Kw - ^w — ; ; ~ (/ CHt2H + 

(r C1H + r C2H) 

''C2Ht1H)2 exp{-/3w, ( ''*C|HrC,H + ^C2Ht2H \ 
(20) 

For each reaction, the r* values in eq 20 are equated to the C-H 
distance at the saddle point in a preliminary calculation without 
the widening function. They are, therefore, not exactly the C-H 
distances at the saddle points for the final surfaces, but the dif­
ferences are only on the order of 10"6 A. The Aw and /3W pa­
rameters were then adjusted to give reasonable values to the kinetic 
hydrogen isotope effect and the Marcus W. Good agreement with 
experimental results was obtained using values Aw = 83.1 kcal 
mol-1 A"6 and /3W = 0.47 A"4. Since W is also sensitive to other 
parameters of the potential energy surfaces, notably the Sato 
parameters of the LEPS surface, other combinations of parameters 
which will reproduce the experimental results probably exist. 
However, we believe that such combinations would give similar 
values of V at the critical geometries. The exponential term in 
eq 20 causes Fw to die off when either C-H distance is large. The 
preexponential term makes the widening function zero at the 
saddle point even though the reaction is not symmetric. The r*'s 
in the exponential term were used to reduce the widening function 
selectively on the high-energy side of the dividing surface. We 
use variational transition-state theory with semiclassical trans­
mission coefficients14'34 to calculate rate constants. For the series 

(31) Kelly, B. T. In Physics of Graphite; Applied Science Publishers: 
London, 1981; pp 50-85. 

(32) Kreevoy, M. M.; Oh, S.-W. J. Am. Chem. Soc. 1973, 95, 4805. 
(33) Truhlar, D. G.; Wyatt, R. E. Adv. Chem. Phys. 1977, 36, 141. 
(34) Garrett, B. C; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J. Phys. 

Chem. 1980, 84, 1730. 
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of surfaces studied here, the variational transition state tends to 
be located on the high-energy side of the saddle point. As the 
variational transition state moves away from the saddle point, it 
is raised by the widening function. Without the r*'s in the ex­
ponential term of the widening function, the variational transition 
state energy would increase too rapidly with increasing AG0, 
resulting in too high a value of W. 

In the hydride transfer reaction between NAD+ analogues, the 
donor is a polarizable molecule and the acceptor has a positive 
charge, so a charge-induced dipole term, as formulated in eq 21, 
has been included. 

^CD = -AcD[(C/rCc)4 ~ (C/r c c ) 8 ] (21a) 

ACD = 95.381 kcal mol'1 (21b) 

C = 2.421 A (21c) 

This can also, to some extent, play the role of the unknown 
charge-dipole term with empirical adjustment of parameters. A 
short-range repulsion term is also included in eq 21, to reduce the 
effect of the charge-induced dipole term on the overall free energy 
of activation, which we preferred to model by adjusting the pa­
rameters of the LEPS function. The parameter C serves to locate 
the charge-induced dipole energy minimum, and it has a significant 
effect on W. It was adjusted to keep W approximately the same 
for endothermic and exothermic reactions. It gives a minimum 
values of VCD at rcc = 2.879 A. 

Solvent molecules are usually assumed to be equilibrated with 
the internal charge distribution of the reacting substances.35* In 
the present case the contribution of solvation energy to V was 
estimated using a generalized Born formula15 

K„, = - l l l 
e/ a r, 

E E - (22) 
(Ia b^a ''ab 

The dielectric constant of the solvent, which we set arbitrarily at 
40, is c, a and b are any two of C1, H, and C2; rib is the distance 
between a and b; rC|, rH, and rCl are the van der Waals radii; and 
qh is the fractional charge of atom or group a. It is known that 
the Born formula overestimates the free energy of hydration of 
ions when the bulk value for the dielectric constant and the 
crystallographic radii of the ions are used.36 However, Rashin 
and Honig have shown that the original Born model gives rea­
sonable results for monatomic ions if appropriate radii are used.37 

Therefore, we decided to use van der Waals radii for the Born 
formula. In particular, we used 2.0 A for C1 and C2 and 1.2 A 
for H.26b 

The atomic charges at the critical configurations are obtained 
as follows. In the Marcus theory of atom and group transfer, r 
represents the tightness of the critical configuration.18,20 The 
charge of the in-flight H at the critical configurations is modeled 
by T - I.18 The experimental T value for the hydride transfer 
reaction we are trying to mimic is about 0.80," so the charge of 
the in-flight hydride at the symmetrical critical configurations, 
for which rC|H = rC2H, was given the value -0.2. We represented 
the charges as functions of the distances between carbons and the 
hydride in flight by eq 23-25. 

Ic1 = 3/ |3 + 2 exp(rC!H - rClli)} 

Oc1 = 3/{3 + 2 exp(rc,H - rC!H)} 

IH = 1 - (<?c, + <7c,) 

(23) 

(24) 

(25) 

for the The values of <?<;,, <7c2'
 a r |d <7H >n terms of rClH -

symmetric reaction, are shown in Figure 1. 
We note that, because the generalized Born solvation energy 

does not vanish in the reactant and product regions, the actual 

(35) (a) Reference 6, pp 401-403. (b) Ibid., pp 100-107. (c) Ibid., pp 
85-86, 184-185. 

(36) Latimer, W. M.; Pitzer, K. S.; Slansky, C. M. /. Chem. Phys. 1939, 
7, 108. 

(37) Rashin, A. A.; Honig, B. J. Phys. Chem. 1985, 89, 5588. 
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Figure 1. The charges on the acceptor carbon (a), the donor carbon (b), 
and the hydrogen (c) as function of the difference between the two C-H 
distances, for collinear configurations, according to eq 23-25. 

r(A+i-AjH center of mass), A 

Figure 2. Potential energy contours, minimum energy path (dot-dash 
line) and tunneling path connecting classical turning points at the most 
probable tunneling energy at 300 K (light solid line) for a collinear, 
three-body model of hydride transfer from AyH to A,+. A, and Ay rep­
resent two atoms, C1 and C2, which have mass of 15 daltons; r(A,-AyH) 
is the distance from the center of mass of the AyH moiety to the third 
body A, and r(Ay-H) is the distance between A, and H. Reactant and 
product bond strengths are both 73 kcal mol"'. Orthogonal, mass-scaled 
coordinates are used. The zero of energy is defined as the bottom of the 
reactant vibrational well. The saddle point is shown at +. The most 
probable reaction path involves tunneling. The representative tunneling 
path shown is explained at the end of section 4. 

energy changes for the processes A1H -» A1
+ + H" and AyH -* 

Ay
+ + H" are not given simply by the D1. values in the extended 

LEPS term. Nevertheless, because of the way the charges are 
defined in eq 23-25, the reactant vibrational frequency may still 
be obtained simply from the Morse parameters. These parameters 
have been adjusted to give frequencies in agreement with ex­
periment, as described above. The shape of the potential energy 
surface near the saddle point and critical configurations, including 
the Born solvation term, has been adjusted to reproduce the ex­
perimental kinetic results. 

The resulting potential energy surface for hydride transfer is 
shown in Figure 2, in mass-scaled, orthogonal coordinates.35bi38 

The potential energy surface is shown in coordinates scaled for 
the deuteride transfer in Figure 3. The skew angle14 for hydride 
transfer is small, 20°, so tunneling in configurations more extended 

(38) (a) Levine, R. D.; Bernstein, R. D. In Molecular Reaction Dynamics 
and Chemical Reactivity; Oxford University Press: New York, 1987; p 165. 
(b) Garrett, B. C; Truhlar, D. G. /. Phys. Chem. 1979, 83, 1052. 
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rfAj-AjD center of mass), A 

Figure 3. The same as Figure 2, except for deuteride transfer. 

than the saddle point (conventional transition state) is quite 
significant. For deuteride transfer the skew angle increases to 
28°. This reduces the tunneling probability, particularly in more 
extended configurations, and shifts the most probable point of 
barrier penetration to a less extended configuration, closer to the 
saddle point. It is interesting to compare the potential energy 
surface of Figure 2 to the one used in our previous study.4 In that 
case the saddle point geometry and barrier height for the reference 
symmetric reaction were characterized by r*CiH = 1.36 A and V* 
= 21.1 kcal mol"1, whereas the present potential energy surface 
has r*c H = 1.46 A and V* = 18.3 kcal mol"1. The previous saddle 
point vibrational frequencies were 442 cm"1 for the stretch, 639 
cm"1 for the bend, and 17581 cm"1 for the reaction coordinate, 
whereas the present values for these frequencies are 622, 836, and 
997i cm"1, respectively. We see from these frequencies that the 
new bound modes are tighter, and the barriers are flatter near 
the saddle points and the critical configurations. 

The variation of the four terms contributing to V (eq 11) as 
a hydride system passes along the minimum energy path from 
reactants to products (see Figure 4). The justification for V will 
lie in the many aspects of the experimental results that it permits 
us to reproduce. 

4. Calculation of Rate Constants 
The rate constants for the three-body models were calculated 

by improved canonical variational transition-state theory (ICV-
j ) 14,34 w j t j , t r i e i a rg e curvature ground-state (LCG3) tunneling 
approximation14 using the program POLYRATE.39,40 We identify 
the A1

+ and A,+ of section 2 with C1 and C2 of section 3; the masses 
of A,+ and A / were set equal to 15 daltons in all cases. In carrying 
out the ICVT and LCG 3 calculation, the three-body potential of 
mean force of section 2 was treated as an ordinary potential energy. 
Rotational and vibrational partition functions are approximated 
by the independent mode approximation, with rigid rotations and 
harmonic vibrations.148 All calculations reported in this paper 
are for a temperature of 300 K. 

The bimolecular rate constant including tunneling is given14" 
by the expression 

k,j = fc(ICVT)K(LCG3) (26) 

where the "quasi-classical rate constant" fc(ICVT) corresponds 
to classical reaction coordinate motion with other degrees of 
freedom quantized. Variational transition-state theory selects the 
transition states from species lying on the minimum potential 
energy path from reactants to products by maximizing the qua-
si-thermodynamic free energy of activation.41 (In contrast 

(39) Isaacson, A. D.; Truhlar, D. G.; Rai, S. N.; Steckler, R.: Hancok, G. 
C; Garrett, B. C; Redmon, M. J. Comput. Phys. Commun. 1987, 47, 91. 

(40) Lu, D.-H.; Truong, T. N.; Melissas, V. S.; Garrett, B. C; Steckler, 
R.; Isaacson, A. D.; Rai, S. N.; Hancock, G. C; Lauderdale, J. G.; Joseph, 
T.; Truhlar, D. G. POLYRATE, Version 3.0; University of Minnesota: Min­
neapolis, unpublished. 

(41) (a) Garrett, B. C; Truhlar, D. G. J. Chem. Phys. 1979, 70, 1593. (b) 
Tucker, S. C; Truhlar, D. G. In New Theoretical Concepts for Understanding 
Organic Reactions; Bertran, J., Csizmadia, I. G., Eds.; Kluwer Academic 
Publishers: Boston, 1989; pp 291-346. 
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Figure 4. Calculated total energy, and its constituents, along the mini­
mum energy path, for a hydride transfer with reactant and product bond 
strengths both 73 kcal mol"'. The LEPS function is --- (eq 12). The 
widening function is ••• (eq 20). Ion-induced dipole interaction is - •• -
(eq 21). The generalized Born energy is - • - (eq 22). The total is —. 
The mass-scaled reaction coordinate, s, is the distance from the saddle 
point, measured along the minimum energy path, in the coordinate sys­
tem shown in Figure 2. Positive values of s indicate progress toward 
products; negative values, reversion toward reactants. 

conventional transition-state theory locates the transition state 
at the point on the minimum energy path which maximizes the 
potential energy.2) 

In the present case, for the symmetric reaction with C-H bond 
energy of 73 kcal mol"1, the potential energy maximum on the 
minimum energy path is symmetrical, with C-H bond lengths of 
1.46 A. However, because the zero-point energy rises rapidly on 
either side of the symmetric structure, two equivalent free energy 
maxima exist, symmetrically displaced from the potential energy 
maximum. One of these has a donor C-H bond length of 1.34 
A and an acceptor of 1.60 A. In the other, the donor and the 
acceptor bond lengths are reversed. Between them there is a 
shallow local free energy minimum, whose maximum depth is 0.47 
kcal mol"1. In order to mimic experimental results for unsym-
metrical reactions, the bond dissociation energy of A,-H was 
changed systematically to generate exo- or endothermic reactions. 
For symmetrical reactions both the A1-H and Ay-H bond strengths 
were changed simultaneously. For exoergic reactions the earlier 
maximum serves as the overall transition state, but for endoergic 
reactions the later maximum is the overall transition state. Once 
the transition state has been located, variational transition-state 
calculations are made in the same way as conventional transi­
tion-state calculations.14,34,39"41 

The quasi-classical kinetic isotope effect, KIEqc, is kH-
(ICVT)/fcD(ICVT). It is determined principally by changes in 
zero-point energy and rotational partition functions. 

The transmission coefficient K(LCG3) accounts in principle for 
all quantum effects on the reaction coordinate, although tunneling 
is the most important.13'34,41 In the formalism employed here,14,34 

the transmission coefficient is always calculated for ground-state 
reactants in the exoergic direction. It involves a thermal average 
over total energy, E: 

K ( L C G 3 ) = — exp 
KB1 (S)x;—U) d£ (27) 

where Ka
AG is the vibrationally adiabatic ground-state energy at 

the zero-temperature variational transition state, eRG is the 
zero-point energy of reactant, and P°(E) is the ground-state 
tunneling probability calculated by the LCG3 algorithm for es­
timating corner-cutting tunneling effects semiclassically. The 
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tunneling contribution to the kinetic isotope effect is *H-
(LCG3)//cD(LCG3). The tunneling probability in eq 27 should 
be summed over all the vibrational states of the exoergic products 
that are significantly populated. In the present case, however, 
we included only ground-state-to-ground-state tunneling. In 
additional calculations not reported here in detail, we tested this 
approximation by recalculating the rate constants for the isoen-
ergetic reaction and the most exoergic of the reactions reported 
in Table IV. Including tunneling into excited product states by 
the methods used previously,4,140 again with harmonic vibrations, 
caused a 3% increase in kJH) in the exoergic case and an 0.3% 
increase in the isoenergetic case. These changes would tend to 
reduce W by less than 1 kcal mol"1, and they do not change our 
results significantly. 

Since tunneling into excited states of the product was much 
more important in our previous study,4 it is of considerable interest 
to comment on the potential energy surface difference that pri­
marily changes the conclusion about the role of vibrationally 
assisted tunneling (VAT). The principal feature that decreases 
VAT on the new surface is that both the potential energy V and 
the vibrationally adiabatic ground-state potential34 decrease much 
less rapidly after the saddle point is passed. Consider, for example, 
the case with DJAj-H) = 73 kcal mol'1 and Z>e(A,-H) = 83 kcal 
mol"1. On both the old and new surface the saddle point is early 
for this case, with rA/H > rAH by 0.1-0.2 A. If we proceed to the 
point where rA H increases 0.4 A beyond its value at the saddle 
point, we find on the old surface that V drops from 17.7 to 7.2 
kcal mor1 and Ka

G drops 7.8 kcal mol"1. Vibrationally excited 
states can already be accessed with positive kinetic energies at 
this location. On the new surface, though, K drops only from 13.7 
to 13.0 kcal mol"1, and V° has decreased to only 0.15 kcal mol"1 

below its value at the saddle point. Tunneling into an excited state 
would require a tunneling path ending with rAH extended almost 
0.5 A further out into the product valley, and such a long tunneling 
path has a very small tunneling probability associated with it. 

For the potential energy function used here, the minimum 
energy path (MEP) has the transferred H atom lying on a straight 
line from the acceptor, A,, to the donor, Ay. For such a collinear 
MEP, the dominant tunneling paths of the LCG3 approximation 
are collinear. For discussion purposes in the next section we will 
identify a representative tunneling path, a representative pre-
tunneling configuration, and a representative critical configuration. 
These all refer to a temperature of 300 K, and they are defined 
as follows. First we find the energy, En., at which the integrand, 
P0IE) exp(-E/kBT), of eq 27 is a maximum. This is called the 
representative or most probable tunneling energy. (For example, 
for the symmetrical reaction with De = 73 kcal mol"1, £rep = 21.3 
kcal mol"1, which is 0.7 kcal mol"1 below Fa

AG.) At this energy 
the tunneling path with the smallest A,-Ay- distance is taken as 
representative; examples of such representative tunneling paths 
in the semiclassical LCG3 approximation,141^ are shown in Figures 
2 and 3. Along such a path, the system proceeds with positive 
kinetic energy along the minimum energy path until the vibra­
tionally adiabatic ground-state potential energy curve V° equals 
£rep; then it tunnels along a straight line through the mass-scaled 
coordinate system to the point in the product valley where V° 
again equals Eref. The representative pretunneling configuration 
is identified with the point in the reactant valley where V° = En^, 
and the representative critical configuration is identified with the 
point of highest potential energy along the straight-line tunneling 
path. In general, analyzing the full range of reactions studied 
here, both symmetrical and unsymmetrical, with Z)6(CH) = 58-83 
kcal mol"1, the representative critical configurations for hydride 
transfer have C-C distances 0.138-0.147 A greater than the saddle 
point value. The representative critical configurations for deuteride 
transfer have critical configurations 0.088-0.099 A greater than 
the corresponding saddle point values. 

5. Results and Discussion 

The calculated rate constants, transmission coefficients, and 
kinetic isotope effects for symmetrical reactions are shown in Table 
I. Linearized Marcus theory, eq 8-10, predicts that a plot of 
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Table I. Calculated Rate Constants, Transmission Coefficients, and 
KIEs for Symmetrical Reactions" 

DJiCHf 

83.0 
80.5 
78.0 
75.5 
73.0 
70.5 
68.0 
65.5 
63.0 
60.5 
58.0 

kdHY 

8.43 X 10"4 

1.27 X 10"3 

2.11 X 10"3 

3.00 X 10"3 

5.67 X 10"3 

7.88 X 10"3 

1.53 X 10"2 

2.32 X 10"2 

4.60 X 10"2 

1.02 X 10"1 

1.65 X 10"' 

KIEqc 

1.89 
1.88 
1.86 
1.82 
1.78 
1.79 
1.85 
1.92 
1.99 
2.09 
2.21 

"(H) 

2.27 
2.79 
3.56 
3.82 
5.32 
5.30 
7.22 
7.39 
9.67 

13.7 
13.6 

*(D) 

1.21 
1.28 
1.36 
1.45 
1.54 
1.64 
1.85 
2.02 
2.27 
2.60 
2.91 

KIE 

3.71 
4.09 
4.86 
4.80 
6.16 
5.80 
7.21 
7.00 
8.48 

11.0 
10.3 

"At 300 K. *The bond dissociation energies for donors and accep­
tors in kcal mol"'. cM"'s"'. 
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Figure 5. The variation of rate constants for symmetrical reactions, ku, 
with changes in the equilibrium constant for unsymmetrical reactions 
transferring a hydride to A1

+ from a standard donor with a bond strength 
of 73 kcal mol"1. ATy0 and ku were made to vary by changing C-H bond 
strengths as described in the text. This plot is assumed to be linear in 
linearized Marcus theory, and its slope is r — 1. Actually, some curvature 
is apparent, in the sense that the slope becomes less negative (T becomes 
larger) as the A,-H bond becomes stronger. The curvature is not strong, 
however, and a linear relation, namely, In ku = -5.150 - 0.126 In K11", 
represents the relation with an average absolute value of the discrepancy 
of ~8% in ku. This relation is parallel to a tangent to the curve at In 
Kf = -5. It gives a value of 0.874 for TH. 

In ku against In Kf should be linear with a slope of T - 1 (eq 10). 
The Kf 's in eq 8 are the equilibrium constants for transfer of 
hydride from a standard donor, HA;, to a series of acceptors, A1

+, 
of varying C-H bond strength; the ka's are rate constants for the 
symmetric reactions in which the bond strength of both the donor 
and acceptor are changed to the new value. Such a plot is shown 
in Figure 5. Because computational results have little scatter, 
and because a large range of Kf values was spanned, the points 
in Figure 5 can be seen to define a curved line. However, the 
curvature is slight. The best linear relation between In kn and 
In ATy0, fitted by the method of least squares, is shown in Figure 
5. The average discrepancy between the computed ku values and 
those corresponding to the least-squares line in Figure 5 is 8%. 
A similar departure from linearity would not be detectable in the 
experimental results." The best linear relation between In ktt and 
In Kf has a slope of-0.13, leading to a value of 0.87 for TH, which 
may be compared with the best experimental value, 0.80." The 
limited number of experimental points and their scatter preclude 
a test for the curvature which is shown by the calculated points. 

The comparable plot for deuteride transfer is shown in Figure 
6. It has a similar shape, but, at any given value of Kf, it has 
a slightly larger slope. The least-squares line covering the same 
range of In Kf values has a slope of -0.10, which leads to a TD 

value of 0.90. As expected from the interpretation of T as a 
tightness parameter and the shorter C-C distance found in the 
representative critical configurations for deuteride transfer (nu-
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Figure 6. The same as Figure 5, except for deuteride transfer. The best 
linear relation through the points in this case is In kH = -6.885 - 0.101 
In K,/. Thus TD is 0.899 and TD - TH is 0.025. 
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Figure 7. The Aj-A, separation at the saddle point for symmetric reac­
tions. The bond dissociation energies in the acceptor and the donor are 
varied. The A,-Ay separation at the variational transition state is very 
similar and varies in the same way with bond dissociation energies. 

merical values are given above and examples are shown in Figures 
2 and 3), TD is a little larger than TH, even though hydride and 
deuteride transfer are governed by the same potential energy 
surface. There is no experimental value with which TD can be 
directly compared, but the difference between TH and TD gives 
rise to a characteristic pattern of variations in the KIE with In 
K1J

0, which is described below and compared with experiment. 
The curvature seen in Figures 5 and 6 implies that T becomes 

progressively smaller as the reactant and product C-H bonds 
become weaker. The quantitative discrepancy between the ex­
perimental T value of 0.80 and the value of 0.87 obtained from 
the model could be reduced by making the calculations for smaller 
C-H bond energies. However, in practice, a bond energy of 33 
kcal mol"1 would be required. This is an unreasonable value, and 
it would lead to very unrealistically large isotope effects. The 
discrepancy between computational and experimental T values 
is due either to oversimplifications in the model, errors in the 
potential function, or experimental errors. However, the two T 
values are similar enough for our present purposes. 

As shown in Figure 7, as the product and reactant C-H bonds 
are made weaker, and T becomes smaller, the saddle point C-C 
distance increases. The C-C distance at the most probable critical 
configuration behaves similarly. Thus, r correlates with the 
geometric expansion or contraction of the critical configuration, 
as well as with the strength of its partial bonds. However, r does 
not appear to be numerically equal to the sum of the bond orders 
at the in-flight hydrogen, as was originally suggested.18 Table 
II shows the bond orders, n, calculated for the most probable 

Table II. Bond Orders in Activated Configurations 
configuration «(C,-H) /1(C2-H) /i(total) 

saddle point 0.210 0.210 0.420 
critical configuration 0.154 0.154 0.380 
pretunneling configuration 0.051 0.466 0.517 

-30 -20 -10 0 10 20 

In K. "(H) 
IJ 

Figure 8. Isotope effects on symmetric reactions as a function of K11" for 
unsymmetrical transfer of hydride from a standard donor, with bond 
dissociation energy of 73 kcal mol"1. The symmetric reactions were 
varied by simultaneously changing the donor and the acceptor bond 
strengths, and the unsymmetrical reactions were varied by changing only 
the acceptor bond strength. The filled circles are the overall KIEs, the 
open squares are the tunneling contributions to the overall KIEs, and the 
filled squares are the quasi-classical contributions to the overall KIEs. 

critical configuration, for the case with product and reactant C-H 
bond energy of 73 kcal mol"1. The most probable or representative 
critical configuration was defined, above, as the configuration of 
the highest classical potential energy at the most probable tun­
neling energy at 300 K. The bond orders were calculated from 
reactant bond lengths by means of eq 28.29,3° 

r = re - (0.5 A) log n (28) 

Table II also shows the bond orders at the saddle point (con­
ventional transition state) and at the classical turning point at the 
most probable tunneling energy. The sums of the calculated bond 
orders are about half of T. Thus, T appears to have the qualitative, 
but not the quantitative significance that was ascribed to it.18'20 

Figure 8 shows the calculated quasi-classical and tunneling 
contributions to the kinetic isotope effects and the overall KIE 
for symmetrical reactions, as a function of the bond energy of the 
donor and acceptor C-H bonds. The quasi-classical contribution 
to the KIE is almost constant, but the tunneling contribution to 
the KIE and, consequently, the total KIE increase significantly 
as the C-H bond energy decreases. For hydride transfer reactions 
with 1.0 < K1J < 102, carried out in hydroxylic solvents, KIE values 
generally lie between 5.0 and 5.5,13,42 although for one system a 
value of 6.0 has been obtained.43 (The use of nonhydroxylic 
solvents gives rise to lower KIE values,42,43 but also leads to 
dynamic complexities which are outside the scope of this paper.) 
The total calculated KIE for energetically symmetrical hydride 
transfers becomes 6.2, which is close to the range of measured 
values when the C-H bond energy is 73 kcal mol"1. At this point 
the calculated quasi-classical contribution to the KIE is 1.8, and 
the tunneling contribution to the KIE is 3.5. The experimental 
KIE has been interpreted in terms of quasi-classical and tunneling 
components by studying its solvent dependence.42,43 An experi­
mental upper limit to the quasi-classical factor, obtained in this 
way, is ~2.6, and the corresponding lower limit to the tunneling 

(42) Kreevoy, M. M.; Kotchevar, A. T. J. Am. Chem. Soc. 1990, 112, 
3579. 

(43) Kreevoy, M. M.; Kotchevar, A. T. /. Phys. Chem., accepted for 
publication. 
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Table III. The Effect of the Equilibrium C-C Distance on the KIE for Symmetrical Reactions 

Rt(CC)° 

3.228 
3.254 
3.281 
3.307 

/••(CC)" 

2.90 
2.93 
2.95 
2.97 

*»(H)» AKZ0CH)* K I E / k(H)' 

989 17.83 1.78 5.65 X IO"3 

1118 19.04 2.31 1.34 XlO"3 

1234 20.22 3.47 2.90 X 10"4 

1342 21.60 3.92 5.71 X 10"5 

«(H)/«(D) 

3.46 
3.99 
3.73 
6.74 

KIE 

6.16 
9.22 

12.92 
26.42 

' In units of A. 'The imaginary frequency at the saddle point in units of cm-1. 'The maximum of the vibrationally adiabatic ground-state potential 
energy curve in units of kcal mol"1, relative to the zero-point energy level of the reactants. ''KIE,,. is obtained by dividing the overall KIE by 
X(H)/K(D). 'In units of M"1 s"1. 

factor is ~2.0.42 Considering the uncertainties in the interpre­
tation of the experimental values and the sensitivity of the cal­
culated result to the shape of the barrier, we consider this 
agreement between the experimental values and the values given 
by the molecular model very encouraging. 

The tunneling contribution to the KIE increases, in symmetrical 
reactions, as the C-H bond becomes weaker, because such re­
actions have larger C-C distances in the neighborhood of the 
saddle point. The effect of the C-C separation on the KIE is also 
shown by increasing re(CC) while holding all other potential 
parameters constant for the symmetrical reaction with Z)6 = 73 
kcal mol"1. These results are given in Table III. This table shows 
the C-C bond distance, r*(CC), and imaginary frequency at the 
saddle point, the vibrationally adiabatic ground-state barrier 
height, and some of the results of the dynamic calculations, all 
as functions of re(CC). The table shows that both the quasi-
classical and the tunneling contributions to the KIE approximately 
double with an 0.08-A increase in the equilibrium C-C distance. 
The origin of the increase in the quasi-classical KIE is complicated, 
because the variational transition state shifts as the C-C distance 
is increased, and the shift in the deuterium-containing transition 
state is not completely synchronous with the shift in the hydro­
gen-containing transition state. However, this does not affect the 
tunneling contribution to the KIE, as the tunneling does not take 
place at the transition state in any event. The tunneling isotope 
effect becomes larger as the equilibrium C-C distance increases 
because more energy is required to reach the transition state, as 
shown in Table III, and tunneling then becomes energetically more 
profitable. Without changing any other parameter of the potential 
function, increasing the equilibrium C-C distance also increases 
the imaginary frequency at the saddle point, and this also tends 
to promote tunneling. 

Increasing the equilibrium C-C distance is equivalent to in­
troducing bulky substituents to impede the close approach of the 
reactants. This has long been known to increase kinetic isotope 
effects.44'45 From its discovery this effect was thought to be 
associated with tunneling, but it was thought that a "narrower"46 

barrier would have to be produced by the bulky substituents. In 
our earlier paper4 we pointed out that corner-cutting tunneling 
would produce an increase in the tunneling contribution to the 
KIE when the approach of the reactants was hindered, without 
requiring any special shape of the potential energy surface. Since 
then, detailed calculation by Wolfe and co-workers has tended 
to confirm this.47 The present paper further strengthens the 
suggestion that corner-cutting tunneling is an important factor 
in the steric exaltation of isotope effects. This conclusion is 
traceable to large-curvature tunneling,l4'34'41 and does not require 
any special modification of the potential energy surface. 

The calculated equilibrium constants, rate constants, trans­
mission coefficients, and kinetic isotope effects for unsymmetrical 
reactions are shown in Table IV. 

Figure 9 is a Bronsted plot with structure variation in the 
acceptor. It shows that the A^(H)'s give an acceptable Bronsted 

(44) Lewis, E. S.; Funderburk, L. H. /. Am. Chem. Soc. 1967, 89, 2322. 
(45) Melander, L.; Saunders, W. H., Jr. In Reaction Rates of Isotopic 

Molecules; John Wiley: New York, 1980; p 152. 
(46) The width of the energy barrier for a bimolecular reaction is not well 

defined. We believe that the intent of the original authors41 was to suggest 
that the bulky substituents increased the imaginary frequency at the saddle 
point. 

(47) Wolfe, S.; Hoz, S.; Kim, C-K.; Yang, K. J. Am. Chem. Soc. 1990, 
//2,4186. 

Table IV. Calculated Equilibrium Constants, Transmission 
Coefficients, Rate Constants, and KIEs for Unsymmetrical 
Reactions" 

D<(A,H)b 

83.0 
80.5 
78.0 
75.5 
73.0 
70.5 
68.0 
65.5 
63.0 
60.5 
58.0 

Ku 
1.8 X 107 

2.8 X 10s 

4.3 X 103 

6.6 X 10 
1.0 
1.5 X 10"2 

2.4 X IO"4 

3.6 X 10"6 

5.5 X 10"8 

8.4 X 10"10 

1.3 X IO"11 

^j(HY 

5.62 
1.05 
1.77 X 10"' 
3.23 X 10"2 

5.67 X 10"3 

7.36 X IO"4 

1.15 X IO"4 

1.67 X 10"5 

2.31 X 10"* 
2.55 X IO"7 

2.78 X IO"8 

M H > e 

3.07 X 10"7 

3.74 X 10"« 
4.14 X 10"5 

4.94 x IO"4 

5.67 X 10"3 

4.81 X IO"2 

4.92 X 10"1 

4.66 
4.22 X 10 
3.04 X 102 

2.16 X 103 

K(H) 

2.88 
3.42 
3.75 
4.52 
5.32 
4.93 
5.67 
6.24 
6.77 
6.04 
5.53 

4D) 
1.29 
1.40 
1.46 
1.53 
1.54 
1.63 
1.70 
1.80 
1.89 
1.99 
2.04 

KIEy 

4.27 
4.64 
4.76 
5.37 
6.16 
5.38 
5.94 
6.23 
6.48 
5.56 
5.02 

0At 300 K. *The bond dissociation energies for acceptors in kcal 
mol"'. The bond dissociation energy of donors is fixed at 73 kcal mol"'. 
[For the ICj1(H) column, these are the bond dissociation energies for the 
donors, and the standard value is used for the acceptor.] 'kyiH) and 
kjj{H) are forward and reverse rate constants, respectively, in units of 
M"1 s"1. 

C 
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Figure 9. A Bronsted plot of computed rate constants. In the absence 
of experimental error and molecular idiosyncrasy, slight curvature is 
visible. The least squares representation of the results is: In ktJ = -5.476 
- 0.457 In K0. 

correlation,22 although slight curvature is visible. (Because of 
experimental scatter and molecular idiosyncrasy, such curvature 
would be hard to detect using experimental results.) The least-
squares slope, a, is 0.46. Equation 29 gives the linearized Marcus 
theory expression for the Bronsted a, with x defined by eq 30.18'21 

a = x + 0.5(T - 1) - 0.5(RT In /sTy/X)2(T - 1) (29) 

X = 0 . 5 [ l - ( 7 ? 7 / X ) l n ^ ] (30) 

The least-squares straight lines given by both the Bronsted plot 
(Figure 9) and the plot of In kH against In Kf (Figure 5) are 
actually tangents to the curves defined by the points at about In 
Ky = -4 or In Kf = -4. The X value appropriate to such a value 
of In K1J or In Kf is ~83 kcal mol"1, so x is 0.50. Equation 29 
then gives 0.44 for a, in excellent agreement with the least-squares 
slope obtained from Figure 9. There is no directly comparable 
experimental result, but, since linearized Marcus theory generally 
fits the experimental results," and the experimental T is 0.80, an 
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experimental a of 0.40 can be expected. Taken all together these 
results give strong support to the quantitative formulation of T.18,21 

To proceed further in our analysis of the results, we need a value 
for W. (JW does not enter into the equations because it is assumed 
to equal W; thus it cancels out in eq 5 but W is still needed in 
eq 6.) For simplicity, and because it is consistent with the ex­
perimental results,"'12 the potential energy surface was adjusted 
until the results were consistent with W = O. In our earlier work4 

a value of 18.5 kcal mol-1 was obtained for W, and, at an in­
termediate stage of the present work, intermediate values of W 
were obtained. As indicated above, it has been conventionally 
thought that W represents the standard free energy of formation 
of a precursor configuration from the reactants.2'10,1 U 7 However, 
there are no local energy or free energy minima corresponding 
to any of these values of W, and it does not appear that W is 
the standard free energy of formation of any well-defined structure 
from the reactants. It appears to have only the significance given 
to it by eq 6. It is a free energy which is subtracted from AG*, 
chosen so that the rest, AG*, may be calculated using eq 4, with 
the additional constraint that W should be independent of Ktj or 
nearly so. 

Using eq 3 and 4, with W = O, each of the kn in Table I gives 
a X17 (or X11) value. For unsymmetrical reactions, X can then be 
calculated from eq 7. The value of X77 for the standard donor is 
found to be 82.6 kcal mol"1, and the values of X1-, for the various 
acceptors are in the range 78.5-84.8 kcal mol"'. The Marcus 
theory ky's were calculated from eq 3, 4, and 7 (still using W 
= 0). The average discrepancy between Marcus theory values 
of ky(H) and those given in Table IV is 0.3%. Alternatively X1-, 
(or X77) values can be obtained from the linearized Marcus theory 
expression, eq 9 and 10. These values turn out to be in a similar 
range, namely, X1-, = 78.7-85.0 kcal mol"1, and they were used, 
as above, to calculate linearized Marcus theory values of ky. On 
average, these differ too from the values in Table IV by only 0.3%. 
Thus both the original Marcus formalism and the linearized 
version give excellent correlations of the calculated ICVT/LCG3 
rate constants, just as they do for measured ones. Linearized 
Marcus theory, with the definition of T which is imbedded in it, 
gives an excellent approximation of the original theory. 

W = -2 kcal mol"1 was used in treating the experimental 
results." For values between 2 and -2 kcal mol"1, the choice of 
W has very little impact on the correspondence between Marcus 
theory calculation and the experimental results. Furthermore, 
the values we obtained for X1,- are in good agreement with the 
experimental" values, which are in the range 85-98 kcal mol"1; 
these values would be 83-96 kcal mol"1 if W = 0 had been used 
in treating the experimental results. This, combined with the 
satisfactory agreement mentioned above for the TH and the similar 
values of W used with the experimental and computed results, 
indicates that we have achieved the goal set forth at the end of 
section 2. 

We now consider the isotopic dependence of the Marcus pa­
rameter T. Because TH and TD are different (Figures 5 and 6), 
the linearized Marcus formalism and the original Marcus for­
malism both make the superficially unexpected prediction that 
changing K11 will not have the same effect on the KIE when the 
acceptor is changed as it does when the donor is changed.4,9 This 
occurs because, to get Kn > 1.0 by changing the acceptor, the 
acceptor C-H bond must be made stronger than the standard C-H 
bond, and the isotope effect on kn is reduced (Figure 8). This 
leads to a reduced isotope effect on Xn, and when the X17 for H 
and D are recombined with the standard X77 for H and D, we get 
a reduced isotope effect on X. This, in turn, leads to a reduced 
KIE. On the other hand, if it is the donor which is changed to 
get Kj1 > 1.0, then the donor C-H bond must be made weaker 
than the standard. The same process outlined above then gives 
an increased isotope effect on X. If the change in AG° is not too 
large, an increased KIE is predicted. In the absence of tunneling, 
rD - TH is very small; it is 0.004 using variational transition-state 
theory and 0.002 using conventional transition-state theory. 
Furthermore, including tunneling only along the minimum energy 
path, gives much smaller transmission coefficients than the LCG3 

In K..(H) 

Figure 10. The variation of the computed In KIE17 + C(K11) with In K11, 
plotted as suggested by linearized Marcus theory. C(Kn) = -0.SRT(In 
K,j)2(l/XH - 1/XD). Triangles represent the result of bond strength 
variation in the acceptor; circles, the results of bond strength variation 
in the donor. The lines are the least-squares lines through the filled points 
and represent the relation which exists close to the origin. The slopes of 
the lines are ±0.0116, and they yield a value of 0.0232 for TD - TH. 

1.8 
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W 
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1.7 " 

1.6 

10 

InK.. 

20 

Figure 11. The variation of experimental In KIEy + C(ATy) plotted as 
suggested by linearized Marcus theory, in the same way that the com­
puted results are plotted in Figure 10. C(K0) = Q.5RT(\n ATy)

2(l/XH -
1/XD). Filled points are for structure variation in the donor; open points 
for structure variation in the acceptor. (One of the points was misplotted 
in the original publication.) Estimated probable errors are shown. The 
least-squares lines, shown, have slopes of 0.025 and -0.0075, leading to 
values of 0.050 and 0.015 for rD - TH. These may be compared with the 
value, 0.024, obtained from computed KIE values (Figure 10). 

method. (For example, for the symmetrical reaction with De = 
73 kcal mol" minimum-energy-path tunneling143 gives KH = 1.11 
and KD = 1.04, as compared to LCG3 values of KH = 5.32 and 
KD = 1.54.) Thus corner-cutting tunneling is responsible for the 
dependence of kinetic isotope effect on AT77.

4'' We do not believe 
that any molecular model which reproduces the other aspects of 
the experimental results will give TD - TH of the required magnitude 
without corner-cutting tunneling. The effect of TD - TH on the 
KIE is quantified in eq 31 (substitution in the donor) and 32 
(substitution in the acceptor),9 and the results are shown in Figure 
10. 

In (KIE) = In (KIE0) + 0.5 In Ku (T H - TD) -
0.5RT(InK1Jy(I/X11-I/X0) (31) 

In (KIE) = In (KIE0) - 0.5 In K1^rn - TD) + 
0.5KT(In Kij)2(l/XH-X0) (32) 

Experimentally, such a result has already been demonstrated for 
hydride transfer.9 It is shown in Figure 11. The correspondence 
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between Figures 10 and 11 constitutes strong evidence for the 
operation of corner-cutting tunneling even when the KIE value 
is modest. The many-body contributions to these KIEs will be 
the topic of a forthcoming publication. 

The good agreement of the three-body molecular model with 
several aspects of the experimental data gives us some confidence 
that it provides a realistic description of the potential energy 
function in the regions near the saddle point and critical config­
urations. (One should, of course, not interpret the potential 
function quantitatively in other regions.) 

6. Conclusions 
From the dynamics modeling carried out in this work, we believe 

the following conclusions can be drawn. 
(1) It is possible to model several important aspects of ion 

transfer reactions of complicated, polyatomic substances in solution 
by three-body potential functions. Such functions can be par­
ameterized by trial-and-error fitting to experimental results 
combined with simple physically motivated analytic potential 
functions. 

(2) In spite of its classical origins, phenomenological Marcus 
theory can give an excellent account of quantum-corrected results, 
even those dominated by multidimensional tunneling processes. 

Introduction 
Over many years the keto-enol tautomerism, conformational 

properties, and structures of /3-dicarbonyl compounds of the type 
COX-CH2-COX' have attracted considerable interest by ex­
perimentalists and theoreticians. A comprehensive review of these 
physical properties was given by Emsley.2 In almost all /J-di-
carbonyls the U-cis enol form predominates, which is stabilized 
by intramolecular hydrogen bonding. Structures with asymmetric 
(C, symmetry) or symmetric hydrogen bonds (C211 symmetry) are 
considered in the literature. Assuming planarity of the carbon-

(1) (a) On leave of absence from Nanjing Normal University, (b) 
Tubingen, (c) Bochum. 

(2) Emsley, J. Structure and Bonding: Springer: Berlin 1984; Vol. 57, 
p 147. 
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(3) Rate constants for hydride transfer between NAD+ ana­
logues can be successfully modeled in considerable quantitative 
detail by variational transition-state theory calculations in which 
most of the molecular transformations occur by corner-cutting 
tunneling processes. The most probable critical configurations 
have C-C distances significantly larger (>0.1 A) than the C-C 
distances at the saddle points. 

(4) The tightness parameter, T, correlates with the critical 
configuration C-C distance. It is a valid qualitative indicator of 
critical configuration tightness, although it is not quantitatively 
equal to the sum of the bond orders to the in-flight atom. 

(5) The Marcus work terms, W and W, are not identifiable 
with any specific feature of the potential energy surface. Neither 
in the present work nor in our earlier work4 are there any structures 
which can be identified as precursor configurations. W and W* 
represent parts of the standard free energies of activation that 
do not correlate with the standard free energies of reaction. 

Acknowledgment. The authors are grateful to Tomi Joseph, 
Thanh Truong, Gillian Lynch, and Da-hong Lu for assistance with 
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oxygen framework of the keto tautomer, three conformations are 
discussed: U-cis (Z,Z), W-trans (E,E), and S-trans (E,Z). 

A considerable number of structural investigations of /3-di-
carbonyl compounds in the gas phase and in the crystal have been 
reported in the literature. The parent compound, malondialdehyde 
(MDA), with X = X' = H, was studied by microwave spec­
troscopy,3 resulting in a planar enol U-cis structure of Cs symmetry 
with a double minimum potential for the O - H - 0 hydrogen bond. 
This result has been reproduced by a number of theoretical 
calculations at various levels of sophistication.4"7 Gas electron 

(3) Baughcum, S. L.; Duerst, R. W.; Rowe, W. F.; Smith, Z.; Wilson, E. 
B. /. Am. Chem. Soc. 1981, 103, 6296. Baughcum, S. L.; Smith, Z.; Wilson, 
E. B.; Duerst, R. W. /. Am. Chem. Soc. 1984, 106, 2260. Turner, P.; 
Baughcum, S. L.; Coy, S. L.; Smith, Z. J. Am. Chem. Soc. 1984, 106, 2265. 
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Gas-Phase Structure and Conformations of Malonyl Difluoride 
(COF-CH2-COF) and Difluoromalonyl Difluoride 
(COF-CF2-COF). An Electron Diffraction and ab Initio 
Study 

AnDing Jin,1" Hans-Georg Mack, lb Alfred Waterfeld,lc and Heinz Oberhammer*lb 
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Abstract: The geometric structures and conformational compositions of malonyl difluoride, COF-CH2-COF (1), and di­
fluoromalonyl difluoride, COF-CF2-COF (2), were studied by gas electron diffraction and ab initio calculations (HF/3-21G 
and HF/6-31G**). The experimental scattering intensities of both compounds are reproduced best by mixtures of two conformers 
with aplanar skeletons and the C = O bonds eclipsed with respect to vicinal single bonds (C—C, C—H or C—F). The main 
conformer of 1 possesses Cx symmetry with one COF group rotated by <5,(CCCO) = 112 (2)° and the other COF group lying 
in the CCC plane (i52(CCCO) = 0°, i.e. C=O cis to C-C) . The presence of a small amount (10 (10)%) of a second conformer 
with C2 symmetry and with both C=O bonds eclipsing the C—H bonds is likely. The relative stabilities of the two conformers 
of 2 are reversed. The low-energy form possesses C2 symmetry with both COF groups rotated by 120 (2)°, and the high-energy 
form (30 (15)%) possesses C1 symmetry with one C=O bond eclipsing one vicinal C—F bond and the other C=O bond eclipsing 
the opposite C—C bond. The ab initio calculations predict the experimentally determined conformations with C1 and C2 symmetry 
to be stable structures, and their relative stabilities depend on the size of the basis set. The large basis set predicts the correct 
relative energies for 1 and the small basis set for 2. Experimental bond lengths and bond angles are reproduced very well 
by the HF/3-21G method. 


